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Abstract
In this paper, we address the problem of how many randomly labeled patterns
can be correctly classified by a single-layer perceptron when the patterns are
correlated with each other. In order to solve this problem, two analytical
schemes are developed based on the replica method and the Thouless–
Anderson–Palmer (TAP) approach by utilizing an integral formula concerning
random rectangular matrices. The validity and relevance of the developed
methodologies are shown for one known result and two example problems. A
message-passing algorithm to perform the TAP scheme is also presented.

PACS numbers: 02.50.−r, 84.35.+i

1. Introduction

Learning from examples is one of the most significant problems in information science,
and (single-layer) perceptrons are often included in widely used devices for solving this
problem. In the last two decades, the structural similarity between the learning problem
and the statistical mechanics of disordered systems has been observed, thus promoting cross-
disciplinary research on perceptron learning with the use of methods from statistical mechanics
[1, 2]. This research activity has successfully contributed to the discovery of various behaviors
in the learning process of perceptrons [3–5] and to the development of computationally
feasible approximate learning algorithms [6, 7] that had never been discovered by conventional
approaches in information science, particularly for the non-asymptotic regimes in which the
ratio between the numbers of examples p and weight parameters N,α = p/N , is O(1).

Although such statistical mechanical methodologies have been successfully applied to
learning problems, there still remain several research directions to explore. Learning from
correlated patterns is a typical example of such a problem. In most of the earlier studies, it
was assumed, for simplicity, that the input patterns used for learning were independently and
identically distributed (IID) [3–5]. However, this assumption is obviously not practical since
real-world data are usually somewhat biased and correlated across components, which makes
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it difficult to utilize the developed schemes directly for learning beyond a conceptual level. In
order to increase the practical relevance of the statistical mechanical approach, it is necessary
to generalize the approach to handle correlated patterns.

As a first step for such a research direction, we address the problem of correctly classifying
many randomly labeled patterns by a single-layer perceptron when the patterns are correlated
with each other. Finding a regularity in a given set of patterns is highly demanded in many
real-world problems of data analysis. The addressed problem is of practical importance as
an assessment of null hypotheses that state no regularity of classification represented by the
perceptron underlies the labeled correlated patterns. In addition, recent deepening of the
relations across learning, information and communication theories shows that the perceptron
can be utilized as a useful building block for various coding schemes [8–11]. Therefore,
exploration to handle learning from correlated patterns may lead to the development of better
schemes used for information and communication engineering.

This paper is organized as follows. In the following section, we introduce the problem
we are studying. In section 3, which is the main part of this article, we develop two schemes
for analyzing the problem on the basis of the replica method and Thouless–Anderson–Palmer
(TAP) approach. Statistical mechanical techniques that can handle correlated patterns have
already been developed by Opper and Winther [12–14]. However, their schemes, which apply
to densely connected networks of two-body interactions, are highly general, and therefore
properties that hold specifically for perceptrons are not fully utilized. Hence, in this paper, we
offer specific methodologies that can be utilized for perceptron-type networks. We show that
an integral formula provided for ensembles of rectangular random matrices plays important
roles for the provided methods. A message-passing algorithm to solve the developed TAP
scheme is also presented. In section 4, the validity and utility of the methods are shown by
applications to one known result and two example problems. The final section is a summary.

2. Problem definition

In a general scenario, for an N-dimensional input pattern vector x, a perceptron which is
parametrized by an N-dimensional weight vector w can be identified with an indicator function
of class label y = ±1,

I(y|�), (1)

where I(y|�) = 1 − I(−y|�) takes 1 or 0 depending on the value of internal potential
� = N−1/2w ·x. Prefactor N−1/2 is introduced to keep relevant variables O(1) as N → ∞.
Equation (1) indicates that a perceptron specified by w correctly classifies a given labeled
pattern (x, y) if I(y|�) = 1; otherwise, it does not make the correct classification. Let
us suppose that a set of patterns x1,x2, . . . ,xp is given. The problem we consider here is
whether the perceptron can typically classify the patterns correctly by only adjusting w when
the class label of each pattern xµ, yµ ∈ {+1,−1}, is independently and randomly assigned
with a probability of 1/2 for µ = 1, 2, . . . , p as N and p tend to infinity, keeping the pattern
ratio α = p/N of the order of unity.

In general, entries of pattern matrix X = N−1/2(x1,x2, . . . ,xp)T are correlated with each
other, where T denotes the matrix transpose. As a basis for dealing with such correlations, we
introduce an expression of the singular value decomposition

X = UDV T, (2)

of the pattern matrix X, where D = diag(dk) is a p × N diagonal matrix composed
of singular values dk (k = 1, 2, . . . , min(p,N)), and U and V are p × p and N × N

orthogonal matrices, respectively. min(p,N) denotes the lesser value of p and N. Linear
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algebra guarantees that an arbitrary p × N matrix can be decomposed according to
equation (2). The singular values dk are linked to eigenvalues of the correlation matrix
XTX, λk(k = 1, 2, . . . , N), as λk = d2

k (k = 1, 2, . . . , min(p,N)) and 0 otherwise. The
orthogonal matrices U and V constitute the eigen bases of correlation matrices XXT and
XTX, respectively. In order to handle correlations in X analytically, we assume that U
and V are uniformly and independently generated from the Haar measures of p × p and
N × N orthogonal matrices, respectively, and that the empirical eigenvalue spectrum of
XTX,N−1 ∑N

k=1 δ(λ−λk) = (1−min(p,N)/N)δ(λ)+N−1 ∑min(p,N)

k=1 δ
(
λ−d2

k

)
, converges to

a certain specific distribution ρ(λ) in the large system limit of N,p → ∞, α = p/N ∼ O(1).
Controlling ρ(λ) allows us to characterize various second-order correlations in pattern
matrix X.

For generality and analytical tractability, let us assume that w obeys a factorizable
distribution P(w) = ∏N

i=1 P(wi) a priori. Given a labeled pattern set ξp = (X,y), where
y = (y1, y2, . . . , yp)T, it is possible to assess the volumes of w that are compatible with ξp as

V (ξp) = Tr
w

N∏
i=1

P(wi)

p∏
µ=1

I(yµ|�µ), (3)

where �µ = N−1/2w · xµ(µ = 1, 2, . . . , p) and Trw denotes the summation (or integral) over
all possible states of w. Equation (3), which is sometimes referred to as the Gardner volume,
is used for assessing whether ξp can be classified by a given type of perceptron because it is
possible to choose an appropriate w that is fully consistent with ξp if and only if V (ξp) does
not vanish [15].

In the large system limit, V (ξp) typically vanishes and, therefore, ξp cannot be
correctly classified by perceptrons of the given type when α becomes larger than a certain
critical value αc, which is often termed perceptron capacity [15, 16]. Since the mid
1980s, much effort has been made in the cross-disciplinary field of statistical mechanics
and information science to assess αc in various systems [4]: in particular, for pattern
matrices entries of which are independently drawn from an identical distribution of zero
mean and variance N−1. Such situations are characterized by the Marc̆enko–Pastur law
ρ(λ) = [1 − α]+δ(λ) + (2π)−1λ−1√[λ − λ−]+[λ+ − λ]+ in the current framework, where
[x]+ = x for x > 0 and 0, otherwise, and λ± = (

√
α ± 1)2 [17]. However, it seems that little

is known about how the correlations in pattern matrices, which are characterized by ρ(λ) here,
influence the perceptron capacity αc. Therefore, the main objective of the present paper is to
answer this question.

3. Analysis

3.1. A generalization of the Itzykson–Zuber integral

The expression

V (ξp) = Tr
w

N∏
i=1

P(wi)

p∏
µ=1

(∫
d�µI(yµ|�µ)δ(�µ − N−1/2w ·xµ)

)

=
∫ p∏

µ=1

(
duµd�µ

2π
exp[−iuµ�µ]I(yµ|�µ)

)
Tr
w

P(wi) exp[iuTXw]

= Tr
u,w

p∏
µ=1

Îyµ
(uµ)

N∏
i=1

P(wi) exp[iuTXw] (4)

3



J. Phys. A: Math. Theor. 41 (2008) 324013 T Shinzato and Y Kabashima

constitutes the basis for analyzing the behavior of equation (3), where i = √−1,u =
(u1, u2, . . . , up)T and Îyµ

(uµ) = ∫
d�µ exp[−iuµ�µ]I(yµ|�µ)/(2π). In order to evaluate

the average of V (ξp), we substitute equation (2) into (4) and take the average with respect
to the orthogonal matrices U and V . For this assessment, it is worthwhile noting that for the
fixed sets of dynamical variables w and u, w̃ = V Tw and ũ = UTu behave as continuous
random variables that are uniformly generated under the strict constraints

1

N
|w̃|2 = 1

N
|w|2 = Qw, (5)

1

p
|ũ|2 = 1

p
|u|2 = Qu, (6)

when U and V are independently and uniformly generated from the Haar measures. In the
limit as N,p → ∞, keeping α = p/N ∼ O(1), this yields the expression

1

N
ln[exp[iuTXw]] = 1

N
ln

[∫
dw̃ dũ δ(|w̃|2 − NQw)δ(|ũ|2 − pQu) exp[iũTDw̃]∫

dw̃ dũ δ(|w̃|2 − NQw)δ(|ũ|2 − pQu)

]
= F(Qw,Qu), (7)

where · · · denotes averaging with respect to the Haar measures, the function F(x, y) is assessed
as

F(x, y) = Extr
�x,�y

{
−1

2
〈ln(�x�y + λ)〉ρ − α − 1

2
ln �y +

�xx

2
+

α�yy

2

}
− 1

2
ln x − α

2
ln y − 1 + α

2
, (8)

and 〈· · ·〉ρ indicates averaging with respect to the asymptotic eigenvalue spectrum of
XTX, ρ(λ) [18]. The derivation of equations (7) and (8) is shown in appendix A. Extrθ {· · ·}
represents extremization with respect to θ . This corresponds to the saddle-point assessment of
a complex integral and does not necessarily mean the operation of a minimum or maximum.
Expressions analogous to these equations are known as the Itzykson–Zuber integral or G-
function for ensembles of square (symmetric) matrices [19–27]. Equation (7) implies that the
annealed average of equation (3) is evaluated as

1

N
ln[V (ξp)]ξp = Extr

Qw,Qu

{F(Qw,Qu) + Aw(Qw) + αAu(Qu)} , (9)

where [· · ·]ξp = 2−p Try (· · ·) represents the average with respect to a set of randomly labeled
patterns ξp and

Aw(Qw) = Extr
Q̂w

{
Q̂wQw

2
+ ln

[
Tr
w

P (w) exp

[
−Q̂w

2
w2

]]}
, (10)

Au(Qu) = Extr
Q̂u

{
Q̂uQu

2
+ ln

[
1

2
Tr
u,y

Îy(u) exp

[
−Q̂u

2
u2

]]}
. (11)

Normalization constraints Try I(y|�) = 1 guarantee that [V (ξp)]ξp = 2−p, which implies
that for any w the probability that each randomly labeled pattern (xµ, yµ) (µ = 1, 2, . . . , p) is
correctly classified is equal to 1/2 and, therefore, the size of feasible volume V (ξp) decreases
as 2−p on average, regardless of correlations in X. In addition, in conjunction with equations
(9)–(11), this implies that Qw = Trww2P(w),Qu = 0, Q̂w = 0 and Q̂u = α−1Qw 〈λ〉ρ . The
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physical implication is that, due to the central limit theorem, ∆ = (�1,�2, . . . , �p)T follows
an isotropic Gaussian distribution

P(∆) = 1

(2πQ̂u)p/2
exp

[
−|∆|2

2Q̂u

]
= αp/2

(2πQw 〈λ〉ρ)p/2
exp

[
− α|∆|2

2Qw 〈λ〉ρ

]
, (12)

in the limit as N,p → ∞, α = p/N ∼ O(1) when w is generated from P(w) = ∏N
i=1 P(wi),

and U and V are independently and uniformly generated from the Haar measures.

3.2. Replica analysis

Now we are ready to analyze the typical behavior of equation (3). Because ξp is a set of
quenched random variables, we resort to the replica method [28–30]. This indicates that we
evaluate the nth moment of V (ξp) for natural numbers n ∈ N as

[V n(ξp)]ξp = Tr
{ua},{wa}

p∏
µ=1

(
1

2
Tr
yµ

n∏
a=1

Îyµ

(
ua

µ

)) ×
N∏

i=1

(
n∏

a=1

P
(
wa

i

))
exp

[
i

n∑
a=1

(ua)TXwa

]
,

(13)

and assess the quenched average of the free energy with respect to the labeled pattern set
ξp as N−1[ln V (ξp)]ξp = limn→0

∂
∂n

N−1 ln[V n(ξp)]ξp by analytically continuing expressions
obtained for equation (13) from n ∈ N to real numbers n ∈ R. Here, {wa} and {ua} represent
sets of dynamical variables w1, . . . ,wn and u1, . . . ,un, respectively, where 1, 2, . . . , n denote
the n replicas of perceptrons.

For this procedure, an explanation similar to that for the evaluation of equation (7) is
useful. Namely, for fixed sets of dynamical variables {ua} and {wa}, ũa = UTua and
w̃a = V Twa behave as continuous random variables which satisfy strict constraints

1

N
w̃a · w̃b = 1

N
wa · wb = qab

w , (14)

1

p
ũa · ũb = 1

p
ua ·ub = qab

u , (15)

(a, b = 1, . . . , n) when U and V are independently and uniformly generated from the Haar
measures. This indicates that equation (13) can be evaluated by the saddle-point method
with respect to sets of macroscopic parameters Qw = (

qab
w

)
and Qu = (

qab
u

)
in the limit as

N,p → ∞, α = p/N ∼ O(1). In addition, intrinsic permutation symmetry among replicas
indicates that it is natural to assume that the n × n matrices Qw and Qu are of the replica
symmetric (RS) form

Qw =

⎛⎜⎜⎜⎝
χw + qw qw . . . qw

qw χw + qw . . . qw

...
...

. . .
...

qw qw . . . χw + qw

⎞⎟⎟⎟⎠

= E ×

⎛⎜⎜⎜⎜⎜⎝
χw + nqw 0 0 . . . 0

0 χw 0 . . . 0
0 0 χw . . . 0
...

...
...

. . .
...

0 0 0 . . . χw

⎞⎟⎟⎟⎟⎟⎠ × ET, (16)

5



J. Phys. A: Math. Theor. 41 (2008) 324013 T Shinzato and Y Kabashima

and

Qu =

⎛⎜⎜⎜⎝
χu − qu −qu . . . −qu

−qu χu − qu . . . −qu

...
...

. . .
...

−qu −qu . . . χu − qu

⎞⎟⎟⎟⎠

= E ×

⎛⎜⎜⎜⎜⎜⎝
χu − nqu 0 0 . . . 0

0 χu 0 . . . 0
0 0 χu . . . 0
...

...
...

. . .
...

0 0 0 . . . χu

⎞⎟⎟⎟⎟⎟⎠ × ET, (17)

at the saddle point. Here, E = (e1,e2, . . . ,en) denotes an n-dimensional orthonormal basis
composed of e1 = (n−1/2, n−1/2, . . . , n−1/2)T and n − 1 orthonormal vectors e2,e3, . . . ,en,
which are orthogonal to e1. Equations (16) and (17) indicate that under the RS ansatz, the
n replicas that are coupled with each other in equations (14) and (15) can be decoupled by
rotating {w̃a} and {ũa} with respect to the replica coordinates simultaneously with the use
of the identical orthogonal matrix E. The already decoupled expression

∑n
a=1(u

a)TXwa =∑n
a=1(ũ

a)TDw̃a is kept invariant under this rotation. These operations imply that, in the
new coordinates, the average with respect to U and V over uniform distributions of the Haar
measures can be evaluated individually for each of the n decoupled modes, which yields

1

N
ln

⎡⎣ exp

[
i

n∑
a=1

(ua)TXwa

]⎤⎦
= 1

N
ln

[∫ ∏n
a=1 dw̃a dũa Ccoupled exp

[
i
∑n

a=1(ũ
a)TDw̃a

]∫ ∏n
a=1 dw̃a dũa Ccoupled

]

= 1

N
ln

[∫ ∏n
a=1 dw̃adũaCdecoupled exp

[
i
∑n

a=1(ũ
a)TDw̃a

]∫ ∏n
a=1 dw̃a dũa Cdecoupled

]
= F(χw + nqw, χu − nqu) + (n − 1)F (χw, χu), (18)

where

Ccoupled =
n∏

a=1

δ(|w̃a|2 − N(χw + qw))
∏
a>b

δ(w̃a · w̃b − Nqw)

×
n∏

a=1

δ(|ũa|2 − p(χu − qu))
∏
a>b

δ(ũa · ũb + pqu), (19)

and

Cdecoupled = δ(|w̃1|2 − N(χw + nqw))

n∏
a=2

δ(|w̃a|2 − Nqw)

× δ(|ũ1|2 − p(χu − nqu))

n∏
a=2

δ(|ũa|2 + pqu). (20)

Equation (18) and evaluation of the volumes of the dynamical variables {wa} and {ua} under
constraints (14) and (15) of the RS ansatz (16) and (17) provide an expression for the average

6
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free energy

1

N
[ln V (ξp)]ξp = lim

n→0

∂

∂n

1

N
ln[V n(ξp)]ξp

= Extr
Θ

{A0(χw, χu, qw, qu) + Aw(χw, qw) + αAu(χu, qu)} , (21)

where Θ = (χw, χu, qw, qu),

A0(χw, χu, qw, qu) = F(χw, χu) + qw

∂F (χw, χu)

∂χw

− qu

∂F (χw, χu)

∂χu

, (22)

Aw(χw, qw) = Extr
χ̂w ,̂qw

{
χ̂w

2
(χw + qw) − q̂w

2
χw

+
∫

Dz ln

[
Tr
w

P (w) exp

[
− χ̂w

2
w2 +

√
q̂wzw

]]}
, (23)

and

Au(χu, qu) = Extr
χ̂u,̂qu

{
χ̂u

2
(χu − qu) +

q̂u

2
χu

+
1

2
Tr
y

∫
Dz ln

[∫
DxI(y|

√
χ̂ux +

√
q̂uz)

]}
. (24)

Here, Ds = ds exp[−s2/2]/
√

2π represents the Gaussian measure.
Two points should be noted here. The first is that the current formalism can be applied not

only to the RS analysis presented above but also to that of replica symmetry breaking (RSB)
[29, 30]. An expression of the average free energy under the one-step RSB (1RSB) ansatz is
shown in appendix B. In addition, analysis of the local instability condition of the RS solutions
(16) and (17) subject to infinitesimal perturbation of the form of 1RSB yields(

1 − 2
∂2F

∂χ2
w

χ(2)
w

)(
1 − 2

α

∂2F

∂χ2
u

χ(2)
u

)
− 4

α

(
∂2F

∂χw∂χu

)2

χ(2)
w χ(2)

u < 0, (25)

where

χ(2)
w =

∫
Dz

(
∂2

∂(
√

q̂wz)2
ln

[
Tr
w

P (w) exp

[
− χ̂w

2
w2 +

√
q̂wzw

]])2

, (26)

and

χ(2)
u = 1

2
Tr
y

∫
Dz

(
∂2

∂(
√

q̂uz)2
ln

[∫
DxI(y|

√
χ̂ux +

√
q̂uz)

])2

. (27)

Equation (25) corresponds to the de Almeida–Thouless (AT) condition for the current system
[31]. The second point is that although randomly labeled patterns are assumed here, one can
develop a similar framework for analyzing the teacher–student scenario, which assigns pattern
labels by a teacher perceptron, and which has a deep link to a certain class of modern wireless
communication systems [8, 24, 25, 32–38]. One can find details of the framework in [18, 39].

3.3. The Thouless–Anderson–Palmer approach and message-passing algorithm

The scheme developed so far is used for investigating typical macroscopic properties of
perceptrons which are averaged over a pattern set ξp. However, another method is necessary to
evaluate microscopic properties of a perceptron for an individual sample of ξp. The Thouless–
Anderson–Palmer (TAP) approach [40], originating in spin glass research, offers a useful
guideline for this purpose. Although several formalisms are known for this approximation

7
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scheme [6], we follow the one based on the Gibbs free energy because of its generality and
wide applicability [14, 22].

Let us suppose a situation for which the microscopic averages of the dynamical variables,

mw = Tr
w

wP(w|ξp)

= 1

V (ξp)
Tr
u,w

w

p∏
µ=1

Îyµ
(uµ)

N∏
i=1

P(wi) exp[iuTXw], (28)

and

mu = 1

V (ξp)
Tr
u,w

(iu)

p∏
µ=1

Îyµ
(uµ)

N∏
i=1

P(wi) exp[iuTXw], (29)

are required, where P(w|ξp) = ∏p

µ=1 I(yµ|�µ)
∏N

i=1 P(wi)/V (ξp) denotes the posterior
distribution of w given ξp. The Gibbs free energy

�(mw,mu) = Extr
hw,hu

{hw ·mw + hu ·mu − ln [V (hw,hu)]}, (30)

where

V (hw,hu) = Tr
u,w

p∏
µ=1

Îyµ
(uµ)

N∏
i=1

P(wi) exp[hw · w + hu · (iu) + (iu)TXw], (31)

offers a useful basis because the extremization conditions of equation (30) generally agree
with equations (28) and (29). This indicates that one can evaluate the microscopic averages in
equations (28) and (29) by extremization, which leads to assessment of the correct free energy,
since ln V (ξp) = − Extr{mw,mu} {�(mw,mu)} hold, once the function of Gibbs free energy
(30) is provided.

Unfortunately, an exact evaluation of equation (30) is computationally difficult and
therefore we resort to approximation. For this purpose, we put parameter l in front of X
in equation (31), which yields the generalized Gibbs free energy as

�̃(mw,mu; l) = Extr
hw,hu

{hw · mw + hu ·mu − ln[V (hw,hu; l)]}, (32)

where V (hw,hu; l) is defined by replacing X with lX in equation (31). This implies that the
correct Gibbs free energy in equation (30) can be obtained as �(mw,mu) = �̃(mw,mu; l =
1) by setting l = 1 in the generalized expression (32). One scheme for utilizing this relation
is to perform the Taylor expansion around l = 0, for which �̃(mw,mu; l) can be analytically
calculated as an exceptional case, and substitute l = 1 into the expression obtained, which
is sometimes referred to as the Plefka expansion [41]. However, evaluation of higher-order
terms, which are non-negligible for correlated patterns in general, requires a complicated
calculation in this expansion, which sometimes prevents the scheme from being practical. In
order to avoid this difficulty, we take an alternative approach here, which is inspired by a
derivative of equation (32),

∂�̃(mw,mu; l)

∂l
= −〈(iu)TXw〉l , (33)

where 〈· · ·〉l represents the average with respect to the generalized weight
∏p

µ=1 Îyµ
(uµ) ×∏N

i=1 P(wi)× exp[hw · w + hu · (iu) + (iu)T(lX)w], and hw and hu are determined to satisfy
〈w〉l = mw and 〈(iu)〉l = mu, respectively [14]. The right-hand side of this equation is the
average of a quadratic form containing many random variables. The central limit theorem
implies that such an average does not depend on details of the objective distribution but

8
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is determined only by the values of the first and second moments. In order to construct
a simple approximation scheme, let us assume that the second moments are characterized
macroscopically by 〈|w−〈w〉l|2〉l = Nχw and 〈|u−〈u〉l|2〉l = pχu. Evaluating the right-hand
side of equation (33) using a Gaussian distribution for which the first and second moments are
constrained as 〈w〉l = mw, 〈(iu)〉l = mu, 〈|w − 〈w〉l|2〉l = Nχw and 〈|u − 〈u〉l|2〉l = pχu,
and integrating from l = 0 to l = 1 yields

�̃(χw, χu,mw,mu; 1) − �̃(χw, χu,mw,mu; 0) � −mT
uXmw − NF(χw, χu), (34)

where the function F(x, y) is provided as in equation (8) by the empirical eigenvalue spectrum
of XTX, ρ(λ) = N−1 ∑N

k=1 δ(λ − λk) and the macroscopic second moments χw and χu are
included in arguments of the Gibbs free energy because the right-hand side of equation (33)
depends on them. Utilizing this and evaluating �̃(χw, χu,mw,mu; 0), which is not
computationally difficult since interaction terms are not included, yield an approximation
of the Gibbs free energy as

�(χw, χu,mw,mu) � −mT
uXmw − NF(χw, χu)

+ Extr
χ̂w,hw

{
hw ·mw − 1

2
χ̂w(Nχw + |mw|2)−

N∑
i=1

ln
[

Tr
w

P (w) e− 1
2 χ̂ww2+hwiw

]}

+ Extr
χ̂u,hu

⎧⎨⎩hu ·mu − 1

2
χ̂u(pχu − |mu|2)−

p∑
µ=1

ln

[∫
DxI(yµ|

√
χ̂ux + huµ)

]⎫⎬⎭,

(35)

which is a general expression of the TAP free energy of the current system. Extremization of
this equation provides a set of TAP equations

mwi = ∂

∂hwi

ln
[
Tr
w

P (w) e− 1
2 χ̂ww2+hwiw

]
, (36)

χw = 1

N

N∑
i=1

∂2

∂h2
wi

ln
[
Tr
w

P (w) e− 1
2 χ̂ww2+hwiw

]
, (37)

muµ = ∂

∂huµ

ln

[∫
DxI(yµ|

√
χ̂ux + huµ)

]
, (38)

χu = − 1

p

p∑
µ=1

∂2

∂h2
uµ

ln

[∫
DxI(yµ|

√
χ̂ux + huµ)

]
, (39)

where

hw = XTmu − 2
∂

∂χw

F(χw, χu)mw, (40)

χ̂w = −2
∂

∂χw

F(χw, χu), (41)

hu = Xmw +
2

α

∂

∂χu

F (χw, χu)mu, (42)

χ̂u = − 2

α

∂

∂χu

F (χw, χu), (43)

9
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solutions of which represent approximate values of the first and second moments of the
posterior distribution P(w,u|ξp) for a fixed sample of ξp. In equations (40) and (42),
−2(∂/∂χw)F (χw, χu)mw and (2/α)(∂/∂χu)F (χw, χu)mu are generally referred to as the
Onsager reaction terms. The counterparts of these equations for systems of two-body
interactions have been presented in an earlier paper [22].

Solving TAP equations (36)–(43) is not a trivial task. Empirically, naive iterative
substitution of these equations does not converge in most cases. Conversely, it is reported
that message-passing (MP) algorithms of a certain type, which are developed on the basis
of the belief propagation [42], exhibit excellent solution search performance for pattern sets
entries of which are IID with low-computational cost [32, 43]. Therefore, we developed an
MP algorithm as a promising heuristic that reproduces known, efficient algorithms for IID
pattern matrices. A pseudocode of the proposed algorithm is shown in figure 1. One can
generalize this algorithm to the case of probabilistic perceptrons by replacing the indicator
function I(y|�) with a certain conditional probability P(y|�). It should be noted that �w

and �u in the algorithm denote the counterparts of �x and �y in equation (8) for x = χw and
y = χu, respectively. Solving (χu,�u) and (χw,�w) in H-Step and V-Step, respectively,
can be performed efficiently by the use of the bisection method. Solving the TAP equations
employing this algorithm yields approximate estimates of the free energy ln V (ξp) and its
derivatives as well as mw and mu, which can be utilized for assessing whether the given
specific sample ξp can be correctly classified by the perceptron.

Although we have assumed single macroscopic constraints as characterizing the second
moments, the current formalism can be generalized to include componentwise multiple
constraints for constructing more accurate approximations. By doing this, the current
formalism leads to the adaptive TAP approach or, more generally, to the expectation consistent
approximate schemes developed by Opper and Winther [12–14].

4. Examples

4.1. Independently and identically distributed patterns

In order to investigate the relationship with existing results, let us first apply the developed
methodologies to the case in which the entries of X are IID of zero mean and variance N−1.
This case can be characterized by the eigenvalue spectrum of the Marc̆enko–Pastur-type, which
was already mentioned in section 2 and yields

F(x, y) = −α

2
xy. (44)

This implies that equation (22) can be expressed as

A0(χw, χu, qw, qu) = −α

2
(χwχu + qwχu − quχw). (45)

Inserting this into equation (21) and then performing an extremization with respect to χu and
qu yields

χ̂u = χw, q̂u = qw, (46)

where χ̂u and q̂u are the variational variables used in equation (24). This implies that the
replica symmetric free energy (21) can be expressed as

1

N
[ln V (ξp)]ξp = Extr

χw,qw

{
Aw(χw, qw) +

α

2
Tr
y

∫
Dz ln

[∫
DxI(y|√χwx +

√
qwz)

]}
. (47)

10
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Figure 1. Pseudocode of the proposed message-passing algorithm MPforPerceptron. ‘;’ and
‘←’ represent the end of a command line and the operation of substitution, respectively.

This is equivalent to the general expression of the replica symmetric free energy of a single-
layer perceptron for the IID pattern matrices and randomly assigned labels [4, 44].

11
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4.2. Rank deficient patterns versus spherical weights

In data analysis, the property of pattern components strongly correlated with each other is
referred to as multicollinearity, which sometimes requires special treatment. As a second
example, we utilize the developed framework to examine how this property influences αc.

Strong correlations among components can be modeled by rank deficiency of the cross-
correlation matrix XTX. In the current framework, this is characterized by an eigenvalue
spectrum of the form

ρ(λ) = (1 − c)δ(λ) + cρ̃(λ), (48)

where 0 < c � 1 denotes the ratio between the rank of XTX and N, and ρ̃(λ) is a certain
distribution the support of which is defined over a region of λ > 0. For simplicity, let us limit
ourselves to the case of simple perceptron and spherical weights, for which I(y|�) = 1 for
y|� > 0 and 0, otherwise, and P(w) ∝ δ(|w|2 −N). Inserting these into equation (21) offers
a set of saddle-point equations. Among them, those relevant for capacity analysis are

χw = (1 − c)
1

�w

+ c

〈
�u

�w�u + λ

〉
ρ̃

, (49)

χu =
(

1 − c

α

) 1

�u

+
c

α

〈
�w

�w�u + λ

〉
ρ̃

, (50)

χ̂u = − 2

α

∂F(χw, χu)

∂χu

= 1

χu

− �u, (51)

χu = −
∫

Dz
∂2

(∂
√

q̂uz)2
ln H

(√
q̂u

χ̂u

z

)
, (52)

where H(x) = ∫ +∞
x

Dz.
Let us assume that no RSB occurs for α < αc, as is the case for IID patterns. Under

this assumption, a critical condition is offered by taking a limit χ̂u → 0, which implies
that the variance of ∆ = (�1,�2, . . . , �p)T of the posterior distribution for a given sample
ξp typically vanishes. Applying an asymptotic form, ln H(x) � −x2/2 for x � 1, to
equation (52) in conjunction with equation (51) yields

�u � 1

2χu

. (53)

Inserting this into equation (50) gives

2c

α
− 1 � c

α

〈
2�w

�w + 2λχu

〉
ρ̃

� 0. (54)

This means that no RS solution can exist for α > 2c, indicating that the perceptron capacity
is given as

αc = 2c, (55)

regardless of ρ̃(λ). Equation (55) is consistent with the known result αc = 2 for IID patterns
[15, 16], for which c = 1 as XTX is typically of full rank for α > 1. Numerical experiments
for rank deficient pattern matrices support the present analysis, which is shown in figure 2.

12
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Figure 2. Assessment of αc of spherical weights for rank deficient pattern matrices. For
N = 4, 8, 12, . . . , 40, the critical pattern ratio αc(N), which is defined as the average of the
maximum pattern ratio above which no weight can correctly classify a given sample of ξp ,
was assessed from 104 experiments. Each estimate of αc(N) was obtained by extrapolating
αc(N, Tmax), which is an average value of α above which the perception learning algorithm [48]
does not converge after the number of updates reaches Tmax for a given sample of ξp with respect
to Tmax = 103 ∼ 2 × 104. The capacity is estimated by a quadratic fitting under the assumption
of αc(N) � αc + aN−1 + bN−2 where a and b are adjustable parameters. (a) and (b) represent
results for ρ̃(λ) = (2πλ)−1

√
[λ − (

√
α/c − 1)2]+[(

√
α/c + 1)2 − λ]+ and δ(λ − 1), respectively.

For both cases, each data corresponds to c = 1/4, 1/2, 3/4 and 1 from the bottom. The estimates
of αc show excellent consistency with the theoretical prediction αc = 2c regardless of ρ̃(λ).

4.3. Random orthogonal patterns versus binary weights

Equation (55) means that the capacity depends only on the rank of the cross-correlation matrix
XTX in the case of spherical weights; however, this is not always the case. To show this, we
present a capacity problem of binary weights w = {+1,−1}N as the final example.

It is known that in typical cases, simple perceptrons of binary weights can correctly
classify randomly labeled IID patterns for α < αc � 0.833 [45–47]. Our question here is how
αc is modified when the pattern matrix X is generated randomly in such a way that patterns
xµ are orthogonal to each other.

To answer this question, we employ the replica and TAP methods developed in the
preceding sections for ρ(λ) = (1 − α)δ(λ) + αδ(λ − 1), which represents the eigenvalue
spectrum of the random orthogonal patterns assuming 0 < α < 1 and yields

F(x, y) = −1 +

(
L − 1

2
lnL

)
, (56)

where L = 2−1(1±√
1 − 4αxy). Here, ±1 is chosen so that the operation of Extr�x,�y

{· · ·} in
equation (8) corresponds to the correct saddle-point evaluation of equation (A.3). Figure 3(a)
shows how the entropy of w depends on the pattern ratio α. The curve denotes the theoretical
prediction of the replica analysis and the markers denote the averages of the entropy obtained
by the TAP method over 100 samples for N = 500 systems. The error bars are smaller
than the markers. Solutions of the TAP method are obtained by MPforPerceptron, shown
in figure 1. Although the curve and the markers exhibit excellent agreement for data points
α = 0.1, 0.2, . . . , 0.8, we were not able to obtain a reliable result for α = 0.9, at which
point this algorithm does not converge in most cases, even after 1000 iterations. This may
be a consequence of RSB since the replica analysis indicates that the AT stability of the RS

13
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Figure 3. (a) Entropy of w (per element) versus the pattern ratio α. The curve represents the
theoretical prediction assessed by the replica method and the markers denote experimental data
obtained by MPforPerceptron for 100 samples of ξp of N = 500 systems. (b) Diagnosis of the
AT stability. δ−1

AT , which is the inverse of the left-hand side of equation (25), is plotted versus α for
the assessed RS solution. δ−1

AT becomes negative for α > αAT � 0.810, indicating the occurrence
of RSB.
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Figure 4. Results of exhaustive search experiments. For N = 2, 3, . . . , 20, αc(N), which is
defined in figure 2, were estimated from 106 experiments performed by an exhaustive search of
binary weights. The values of capacity αc are estimated by employing a quadratic fitting similar
to that explained in figure 2. For IID patterns, this yields an estimate of αc � 0.819, whereas the
theoretical prediction is 0.833 and is considered as exact. The estimate αc � 0.938 for the random
orthogonal patterns is reasonably close to the theoretical prediction 0.940, which is obtained from
the unstable RS solution.

solution shown in figure 3(a) is broken for α beyond αAT � 0.810 (see figure 3(b)). Therefore
αc � 0.940, indicated by the condition of vanishing entropy is not regarded as the exact, but
as an approximate value provided by the unstable RS solution. However, extrapolation of the
results of direct numerical experiments for finite-size systems indicates that αc � 0.938, as
shown in figure 4, which implies that the effect of RSB is not significant for the evaluation of
αc in this particular case.
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5. Summary

We developed a framework for analyzing the classification problems of perceptrons for
randomly labeled patterns. The development is intended to handle correlated patterns. For
this purpose, we developed two methodologies based on the replica method and the Thouless–
Anderson–Palmer (TAP) approach, which are standard techniques from the statistical
mechanics of disordered systems, and introduced a certain specific random assumption about
the singular value decomposition of the pattern matrix. In both schemes, an integral formula,
which can be regarded as a generalization of the Itzykson–Zuber integral known for square
(symmetric) matrices, plays an important role. As a promising heuristic for solving TAP
equations, we provided a message-passing algorithm MPforPerceptron. The validity and
utility of the developed schemes are shown for one known result and two novel problems.

Investigation of the properties of MPforPerceptron, as well as application of the
developed framework to real-world data analysis [43, 49] and various models of information
and communication engineering [17, 50], are promising topics for future research.
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Appendix A. Derivation of equations (7) and (8)

The expressions

δ(|w̃|2 − Nx) = 1

2π i

∫ +i∞

−i∞

d�x

2
exp

[
−�x

2
(|w̃|2 − Nx)

]
, (A.1)

δ(|ũ|2 − py) = 1

2π i

∫ +i∞

−i∞

d�y

2
exp

[
−�y

2
(|ũ|2 − py)

]
, (A.2)

yield an integral∫
dw̃ dũ δ(|w̃|2 − Nx)δ(|ũ|2 − py) exp[iũTDw̃]

= 1

(4π i)2

∫
d�x d�y

(∫
dw̃ dũ exp

[
−�x |w̃|2

2
− �y |ũ|2

2
+ iũTDw̃

])
× exp

[
N�xx

2
+

p�yy

2

]
.

= (2π)(N+p)/2

(4π i)2

∫
d�x d�y

(
det

[
�xIN −iDT

−iD �yIp

])−1/2

× exp

[
N�xx

2
+

p�yy

2

]
, (A.3)

where IN and Ip are N × N and p × p identity matrices, respectively. Linear algebra can be
used to generate the expression
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ln det

[
�xIN −iDT

−iD �yIp

]
=

min(p,N)∑
k=1

ln(�x�y + λk) + (N − min(p,N)) ln �y

� N(〈ln(�x�y + λ)〉ρ + (α − 1) ln �y), (A.4)

in the large system limit N,p → ∞, keeping α = p/N ∼ O(1). This implies that
equation (A.3) can be evaluated by the saddle-point method as

1

N
ln

[∫
dw̃ dũ δ(|w̃|2 − Nx)δ(|ũ|2 − py) exp[iũTDw̃]

]
= Extr

�x,�y

{
−1

2
〈ln(�x�y + λ)〉ρ − α − 1

2
ln �y +

�xx

2
+

α�yy

2

}
+ const, (A.5)

where const represents constant terms that do not depend on either x or y. In particular,
inserting p × N zero matrix D = 0p,N into this expression leads to

1

N
ln

[∫
dw̃ dũ δ(|w̃|2 − Nx)δ(|ũ|2 − py)

]
= Extr

�x,�y

{
−1

2
ln �x − α

2
ln �y +

�xx

2
+

α�yy

2

}
= 1

2
ln x +

α

2
ln y +

1 + α

2
+ const. (A.6)

Equations (A.5) and (A.6) are used in equations (7) and (8).

Appendix B. Assessment of free energy under the 1RSB ansatz

The argument in section 3 implies that when n × n matrices Qw = (
qab

w

)
and Qu = (

qab
u

)
are

simultaneously diagonalized by an identical orthogonal matrix, the average of the replicated
coupling term with respect to U and V is evaluated as

1

N
ln

⎡⎣exp

[
i

n∑
a=1

(ua)TXwa

]⎤⎦ =
n∑

a=1

F
(
taw, tau

)
, (B.1)

where taw and tau (a = 1, 2, . . . , n) denote a pair of eigenvalues of Qw and Qu and correspond
to an identical eigen vector. Under the 1RSB ansatz, n replica indices are divided into n/m

groups of identical size m, and the relevant saddle point is characterized as

(
qab

w , qab
u

) =

⎧⎪⎪⎨⎪⎪⎩
(χw + vw + qw, χu − vu − qu), a = b,

(vw + qw,−vu − qu), a and b belong
to an identical group,

(qw,−qu), otherwise,

(B.2)

where m serves as Parisi’s RSB parameter after analytical continuation. Qw and Qu of the
form of equation (B.2) can be simultaneously diagonalized, which yields pairs of eigenvalues
as

(
taw, tau

) =
⎧⎨⎩

(χw + mvw + nqw, χu − mvu − nqu), 1,

(χw + mvw, χu − mvu), n/m − 1,

(χw, χu), n − n/m,

(B.3)
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where the numbers in the right-most column represent the degeneracies of the pair of
eigenvalues denoted in the middle column. This gives

1

N
ln

⎡⎣exp

[
i

n∑
a=1

(ua)TXwa

]⎤⎦
= F(χw + mvw + nqw, χu − mvu − nqu) +

( n

m
− 1

)
F(χw + mvw, χu − mvu)

+
(
n − n

m

)
F(χw, χu). (B.4)

Equation (B.4) and assessment of the volumes of dynamical variables {wa} and {ua} under
the 1RSB ansatz (B.2), in conjunction with analytical continuation from n ∈ N to n ∈ R, lead
to the expression of the 1RSB free energy as

1

N
[ln V (ξp)]ξp = lim

n→0

∂

∂n

1

N
ln[V n(ξp)]ξp = Extr

Θ,m

{
A1RSB

0 (χw, χu, vw, vu, qw, qu;m)

+A1RSB
w (χw, vw, qw;m) + αA1RSB

u (χu, vu, qu;m)
}
, (B.5)

where Θ = (χw, χu, vw, vu, qw, qu),

A1RSB
0 (χw, χu, vw, vu, qw, qu;m) = F(χw, χu) +

1

m
(F(χw + mvw, χu − mvu) − F(χw, χu))

+ qw

∂F (χw + mvw, χu − mvu)

∂χw

− qu

∂F (χw + mvw, χu − mvu)

∂χu

, (B.6)

A1RSB
w (χw, vw, qw;m)

= Extr
χ̂w ,̂vw ,̂qw

{
χ̂w(χw + vw + qw)

2
− v̂w(χw + m(vw + qw))

2
− q̂w(χw + mvw)

2

+
1

m

∫
Dz ln

[∫
Dy

(
Tr
w

P (w) e− χ̂w
2 w2+(

√
v̂wy+

√
q̂wz)w

)m
]}

, (B.7)

and

A1RSB
u (χu, vu, qu;m) = Extr

χ̂u,̂vu,̂qu

{
χ̂u(χu − vu − qw)

2
+

v̂u(χu − m(vu + qu))

2
+

q̂u(χu − mvu)

2

+
1

2m
Tr
y

∫
Dz ln

[∫
Ds

(∫
DxI(y|

√
χ̂ux +

√
v̂us +

√
q̂uz)

)m]}
. (B.8)
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[17] Tulino A M and Verdú S 2004 Random Matrix Theory and Wireless Communications (Hanover, MA: Now

Publishers)
[18] Kabashima Y 2008 J. Phys. Conf. Ser. 95 012001
[19] Itzykson C and Zuber J B 1980 J. Math. Phys. 21 411
[20] Voiculescu D V, Dykema K J and Nica A 1992 Free Random Variables (Providence, RI: American Mathematical

Society)
[21] Marinari E, Parisi G and Ritort F 1994 J. Phys. A: Math. Gen. 27 7647
[22] Parisi G and Potters M 1995 J. Phys. A: Math. Gen. 28 5267
[23] Cherrier R, Dean D S and Lefèvre A 2003 Phys. Rev. E 67 046112
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[29] Mézard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond (Singapore: World Scientific)
[30] Dotsenko V S 2001 Introduction to the Replica Theory of Disordered Statistical Systems (Cambridge: Cambridge

University Press)
[31] de Almeida J R L and Thouless D J 1978 J. Phys. A: Math. Gen. 11 983
[32] Kabashima Y 2003 J. Phys. A: Math. Gen. 36 11111
[33] Müller R R 2003 IEEE Trans. Signal Process. 51 2821
[34] Moustakas A L, Simon S H and Sengupta A M 2003 IEEE Trans. Inform. Theory 49 2545
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